Human Optimization

Recently we have had a spark of interest on our Advanced Longevity Therapies such as EBO2 (Extracorporeal Blood Oxygenation and Ozonation with UVBI), a protocol that our Founder, Anil Bajnath, MD prescribes to himself. In this blog post, we will dive into what EBO2 is and how it can potentially increase your longevity.

Understanding Ozone Therapy

Ozone therapy has emerged as a groundbreaking treatment in the world of alternative medicine. It involves the use of ozone gas to promote healing and wellness. This treatment is gaining attention for its potential in addressing various health issues and enhancing overall well-being. But what exactly is ozone therapy, and why is it becoming so popular among health enthusiasts and biohackers?

Ozone, a molecule composed of three oxygen atoms, is known for its powerful oxidizing properties. When administered correctly, it can stimulate the immune system, improve circulation, and promote the body’s natural healing processes. The concept of using ozone for medical purposes isn’t new, but recent advancements have made it more accessible and effective.

In this guide, we will explore the different types of ozone therapy, with a special focus on EBO2. We’ll also look at how this innovative treatment can contribute to longevity and overall health. Whether you’re a health enthusiast, a biohacker, or an executive looking to optimize your well-being, this article is for you.

Types of Ozone Therapy

There are several types of ozone therapy, each with its unique benefits and applications. Understanding these different approaches will help you make an informed decision about which one might be right for you.

Single Pass Ozone Therapy

Single Pass Ozone Therapy is one of the simplest forms of ozone treatment. In this method, a small quantity of blood is drawn from the patient and treated with ozone before being reintroduced into the body. This process is quick and relatively straightforward.

While single pass therapy can be effective for boosting the immune system and providing antioxidant benefits, it may not offer the same level of impact as more advanced methods. It’s often used as an introductory treatment or for individuals who prefer a less intensive approach.

Multi Pass Ozone Therapy

Multi Pass Ozone Therapy takes the single pass method to the next level. Instead of treating the blood with ozone just once, this method involves multiple passes, significantly increasing the amount of ozone exposure. This process enhances the therapeutic effects, making it more effective for chronic conditions and overall health optimization.

This method is particularly popular among biohackers and health enthusiasts looking for a more powerful and comprehensive treatment. The multiple passes allow for deeper detoxification and improved oxygenation of tissues, promoting better overall function.

EBOO (Extracorporeal Blood Oxygenation and Ozonation)

EBOO is a more advanced form of ozone therapy that involves the continuous circulation of blood through an ozone device. This method allows for a more thorough and continuous exposure to ozone, enhancing its therapeutic effects. EBOO is often used for more severe health conditions or for individuals seeking a more intensive treatment option.

The continuous circulation process helps to remove toxins from the blood and improve overall oxygenation. This can lead to significant improvements in energy levels, immune function, and overall well-being. However, EBOO requires specialized equipment and trained professionals, making it a more complex and costly option.

EBO2 (Extracorporeal Blood Oxygenation and Ozonation with UVBI)

EBO2, or Extracorporeal Blood Oxygenation and Ozonation and Ultraviolet Blood Irradiation, is the most advanced form of ozone therapy. It combines EBOO with UVBI, a treatment that exposes the blood to ultraviolet light. This combination creates a potent synergy, making it one of the most effective and comprehensive treatments available.

EBO2 has been gaining popularity for its ability to address a wide range of health issues and promote overall longevity. Some of its potential benefits include improved circulation, enhanced immune function, detoxification, and increased energy levels. However, this treatment requires specialized equipment and trained professionals.

The Benefits of EBO2 for Longevity

One of the most exciting applications of EBO2 is its potential to promote longevity. By improving overall health and reducing the burden of chronic conditions, EBO2 can help individuals live longer, healthier lives. Here are some of the key benefits:

Enhanced Detoxification

EBO2’s filtration process removes toxins and impurities from the blood, reducing the overall toxic burden on the body. This can lead to improved organ function and a lower risk of chronic diseases. Detoxification is essential for maintaining optimal health and preventing the accumulation of harmful substances that can accelerate aging.

Improved Oxygenation

Oxygen is critical for cellular function and overall health. EBO2 enhances oxygen delivery to tissues, improving energy levels, cognitive function, and overall vitality. Enhanced oxygenation supports the body’s natural healing processes and promotes better overall function, contributing to a longer and healthier life.

Immune System Support

Ozone therapy stimulates the immune system, helping the body fight off infections and other health challenges more effectively. A robust immune system is essential for longevity, as it protects against diseases and promotes overall well-being. EBO2 can enhance immune function, making it easier for the body to respond to health threats and maintain optimal health.

Reduced Inflammation

Chronic inflammation is a significant factor in aging and many chronic diseases. EBO2’s anti-inflammatory effects can help reduce inflammation, promoting better health and longevity. By addressing inflammation, EBO2 can help prevent and manage conditions such as arthritis, cardiovascular disease, and autoimmune disorders, contributing to a longer and healthier life.

EBO2 represents a significant advancement in ozone therapy, offering a powerful and effective treatment option for those looking to enhance their health and longevity. By improving detoxification, oxygenation, immune function, and reducing inflammation, EBO2 can help you achieve optimal health and well-being.

Whether you’re a health enthusiast, a biohacker, or an executive looking to optimize your performance, EBO2 offers a promising solution. The Institute for Human Optimization provides the expertise, personalized care, and state-of-the-art facilities needed to support your journey to better health.

Take the first step towards a longer, healthier life by exploring the benefits of EBO2. Contact the Institute for Human Optimization today to learn more about how this innovative treatment can help you achieve your health goals. Experience the future of longevity medicine and unlock your full potential with EBO2.

Longevity Medicine at the Institute for Human Optimization

The Institute for Human Optimization is at the forefront of longevity medicine, offering cutting-edge treatments like EBO2 to help individuals achieve their health goals. Let’s take a closer look at what this institute has to offer and how it can support your journey to optimal health.

Personalized Treatment Plans

At the Institute for Human Optimization, each patient receives a personalized treatment plan tailored to their unique needs and health goals. This approach ensures that you receive the most effective and appropriate care for your specific situation. Personalized treatment plans take into account factors such as medical history, lifestyle, and genetic predispositions, providing a comprehensive and individualized approach to longevity.

State-of-the-Art Facilities

The Institute for Human Optimization is equipped with state-of-the-art facilities and technology, providing the best possible environment for advanced treatments like EBO2. The cutting-edge equipment and comfortable setting ensure that your experience is as effective and pleasant as possible. The institute’s commitment to excellence extends to every aspect of your care, from the initial consultation to the completion of your treatment plan.

About the Institute for Human Optimization

Conveniently located in Hanover, MD, in Howard County outside of BWI, the Institute for Human Optimization combines the latest advancements in longevity medicine with personalized care and expert guidance to be the premier center in Longevity and Health Optimization. Led by Anil Bajnath, MD, we are dedicated to helping you achieve optimal health and vitality through cutting-edge treatments like EBO2. Contact us today to learn more about our services and how we can support your journey to better health and longevity.

As our understanding of genomics evolves, we uncover genes that are truly remarkable, both in their intricacy and their implications. TP53 stands as a prime example—an unsung hero and a titan in the field of genomics. With its latest breakthroughs, TP53 might well be the key to unraveling the mysteries of longevity.

In this blog post, we’ll traverse through the landscapes of genetics to understand TP53, its functions, and the groundbreaking research that indicates its role in the quest for longer, healthier lives. Whether you’re a health-conscious reader, a science enthusiast, or simply intrigued by the idea of living well into the future, this is a journey you don’t want to miss.

Genomics: The Prelude to a New Frontier

The field of genomics has long been the frontier of scientific exploration. It’s here, amidst the code of our DNA, that we find the instructions for life. Deciphering this code and understanding its implications has been one of the great pursuits of modern science.

The Human Genome Project, one of the most ambitious scientific efforts in history, marked a turning point in our understanding of genetic makeup. By mapping the entire human genome, it paved the way for a new wave of insights, leading to discoveries that continue to change the landscape of medicine and health.

TP 53: Guardian of the Genome

Within this blueprint, we find TP53—an unassuming gene known for its extraordinary abilities. Dubbed the “guardian of the genome,” TP53 stands sentinel, monitoring cell division to ensure the integrity of our genetic information.

When TP53 senses DNA damage or other aberrations, it halts the cell cycle, giving the cell an opportunity to repair itself. If the damage is irreparable, TP53 can initiate programmed cell death—apoptosis—protecting the organism from potential harm, including cancer.

The role of TP53 doesn’t end there. It also influences a myriad of cellular processes, from metabolism and stress responses to cell differentiation and senescence. Its reach into the mechanisms of aging and longevity is becoming increasingly apparent.

Latest Research on TP53: A Gateway to Longevity

Recent studies have unearthed a new layer of complexity to TP53’s function, showing that it might play a role in longevity. Researchers found that the activity of TP53 declines with age in mammals, including humans. This decline is associated with several aging-related diseases, suggesting that TP53’s vigilance is essential for maintaining vitality as we age.

The link between TP53 and longevity is not just theoretical—it’s tangible. In animal models, activating the gene has been shown to extend lifespan. While it’s not a straightforward path—overactive TP53 can lead to its own set of problems—understanding the delicate balance that TP53 maintains could offer valuable insights into promoting healthspan, the period of life free from disease and disability.

Elephants and TP53: Lessons from the Pachyderm’s Paradox

The longevity of elephants is a natural wonder and a puzzle to scientists. Given that they have 100 times more cells than humans, one might expect them to be particularly prone to cancer. Yet, elephants have a remarkably low incidence of the disease.

Upon closer examination, researchers discovered a surprising aspect of the elephant genome: their TP53 gene is particularly active and effective. It is estimated that elephants carry 20 TP53 genes whereas humans only have one. This extra layer of protection could explain their resistance to cancer and potentially offer insights into anti-cancer therapies for humans.

The elephant’s paradox is not just a matter of curiosity—it holds profound implications for human health and medicine. By studying the genetic adaptations that allow elephants to thrive, we may unlock the key to a future where cancer is a rarity, and our lifespan matches our healthspan.

The Promise of TP53: A Future of Longevity

The collective weight of evidence pointing towards TP53 as a pivotal player in longevity leaves us with a tantalizing prospect: What if we could harness the power of TP53 to extend human life, not just in years, but in the quality of those years?

Emerging technologies, such as CRISPR, offer new tools for genetic interventions. While the ethics and practicalities of such interventions are subjects of ongoing debate, the potential is undeniable. We stand on the cusp of a new era, where our genetic heritage could be edited to prolong youth and health.

In Conclusion: TP53 and The Path Ahead

TP 53 represents not just a gene, but a symbol—a symbol of the intricacy and resilience of the human genome, and the promise it holds for the future. As we continue to delve into the mysteries of our genetic code, TP 53 stands as a guiding light, offering hope and direction in our pursuit of a longer, healthier life.

For those of us keen on living well and living long, the journey with TP 53 has only just begun. As research advances and our understanding deepens, we may find that the key to a future of longevity lies within the very fabric of our being. Embracing this knowledge with prudence, ethics, and an eye towards collective benefit could well be our greatest leap forward in the quest for a fulfilling and enduring life.

Our collective genetic destiny is within our grasp. The question now is, will we unlock the door to a future where age is just a number, and vitality is our birthright? Time will tell, and TP 53 will be there, ever watchful, as we mold our genetic heritage to shape the course of human history.

REFERENCES

  • Cancer Genome Atlas Research Network. Comprehensive molecular profiling of lung adenocarcinoma. Nature. 2014 Jul 31;511(7511):543-50. doi: 10.1038/nature13385. Epub 2014 Jul 9. Erratum In: Nature. 2014 Oct 9;514(7521):262. Rogers, K [corrected to Rodgers, K]. Nature. 2018 Jul;559(7715):E12. 
  • Damineni S, Rao VR, Kumar S, Ravuri RR, Kagitha S, Dunna NR, Digumarthi R, Satti V. Germline mutations of TP53 gene in breast cancer. Tumour Biol. 2014 Sep;35(9):9219-27. doi: 10.1007/s13277-014-2176-6. Epub 2014 Jun 15. Citation on PubMed
  • Loyo M, Li RJ, Bettegowda C, Pickering CR, Frederick MJ, Myers JN, Agrawal N. Lessons learned from next-generation sequencing in head and neck cancer. Head Neck. 2013 Mar;35(3):454-63. doi: 10.1002/hed.23100. Epub 2012 Aug 21. Citation on PubMed or Free article on PubMed Central
  • Masciari S, Dillon DA, Rath M, Robson M, Weitzel JN, Balmana J, Gruber SB, Ford JM, Euhus D, Lebensohn A, Telli M, Pochebit SM, Lypas G, Garber JE. Breast cancer phenotype in women with TP53 germline mutations: a Li-Fraumeni syndrome consortium effort. Breast Cancer Res Treat. 2012 Jun;133(3):1125-30. doi: 10.1007/s10549-012-1993-9. Epub 2012 Mar 4.

ABOUT THE INSTITUTE FOR HUMAN OPTIMIZATION

Diving into the intricacies of longevity and health optimization often feels like exploring uncharted territories. In Maryland lies a groundbreaking medical practice, The Institute for Human Optimization (IfHO), pioneering the field with a transformational blend of personalized precision medicine, advanced diagnostics, regenerative therapies, cutting-edge research, and an unwavering commitment to the patient’s journey towards their optimal state of being.

At the heart of the Institute for Human Optimization’s success lies a cohesive philosophy that underpins every aspect of its operation. Recognizing that each person is genetically and biochemically unique, IfHO’s approach tailors interventions that are based on the individual. This is more than mere customization; it’s about precision. Here, the comprehensive approach to health is not compartmentalized—it is holistic, factoring in the intricate web of relationships between genetics, environment, nutrition, and behavior.

The Institute for Human Optimization blueprint for optimal health is a symphony of modern science and ancient wisdom. It encourages a proactive stance towards well-being, urging individuals to move beyond mere absence of disease and strive for a life filled with vitality, longevity, and fulfills its potential. This philosophy is the lifeblood of the clinic, shaping the culture and experience one encounters within its walls.

Founded and led by Anil Bajnath, MD, this beacon of optimized healthcare is much more than a mere clinic or center—it represents a fundamental shift in how we approach health and human potential.

Pancreatic cancer, also known as pancreatic carcinoma, is one of the most challenging cancers to treat. The American Cancer Society’s estimates for pancreatic cancer in the United States for 2023 are that about 64,050 people (33,130 men and 30,920 women) will be diagnosed with pancreatic cancer. Of those individuals the American Cancer Society estimates that 50,550 people (26,620 men and 23,930 women) will die of pancreatic cancer. This type of cancer has a very low survival rate and is often diagnosed at a late stage, making treatment even more difficult. Early intervention and improving Pancreatic Cancer outcomes holds a special place in our heart at the Institute for Human Optimization. This week on the blog we will explore the exciting advancements in precision medicine that may change the future of pancreatic cancer treatment.

. . .

Pancreatic cancer persists as a major health concern due to several daunting challenges associated with its diagnosis and treatment. Typically, symptoms do not manifest until the cancer has progressed significantly, often to an advanced stage. By this point, the tumor has usually metastasized to other parts of the body, complicating treatment and significantly worsening the prognosis. Further exacerbating the medical community’s struggle with this disease is its resistance to conventional treatment methods, such as chemotherapy and radiation. The tenacity of pancreatic cancer, coupled with the difficulty of early detection, underscores the urgent need for innovative approaches. This is where precision medicine comes into play, with its promise of targeted and personalized treatment strategies.

What is Precision Medicine?

Precision medicine, also known as personalized or individualized medicine, is a relatively new approach to healthcare that takes into account an individual’s unique genetic makeup, environment, and lifestyle when making treatment decisions. This contrasts with traditional “one-size-fits-all” approaches in which patients with the same disease receive similar treatments regardless of their genetic differences. Precision medicine aims to tailor treatments specifically for each patient, taking into consideration factors such as their genetics, environment, and lifestyle. In a nut shell, it is the right drug or intervention for the right patient at the right time.

What is Precision Oncology?

Precision oncology is a subset of precision medicine that focuses specifically on cancer. It involves using advanced technology such as genomic testing to analyze a patient’s tumor and identify specific genetic mutations that may be driving the cancer’s growth. These mutations can then be targeted with personalized treatments, which may include targeted therapies, immunotherapies, or combination therapies.

Knowing Your Tumor’s Genetic Profile

Traditionally, pancreatic cancer treatment has been limited to surgery, chemotherapy, and radiation therapy. With precision medicine, the goal is to identify the specific genetic mutations driving a patient’s cancer growth and tailor treatment accordingly. This can be achieved through genomic testing of a tumor sample.

Genomic testing involves analyzing the DNA of the tumor cells to look for genetic alterations or mutations. These mutations can provide valuable information about the tumor’s behavior and potential vulnerabilities. This allows doctors to create a personalized treatment plan that targets these specific mutations, potentially leading to more effective and less toxic treatments.

Organoids which are miniature versions of a patient’s tumor grown in a laboratory setting, can also be used to test potential treatments and predict their effectiveness before administering them to the patient. Organoids are fascinating tools that may revolutionize personalized medicine in the future.

Precision Medicine in Action: PARP Inhibitors

One example of precision medicine in action is the use of PARP inhibitors for pancreatic cancer patients with BRCA mutations. PARP inhibitors are a type of targeted therapy that prevents cancer cells from repairing their own DNA, leading to cell death. BRCA mutations occur in about 7% of pancreatic cancer patients and have been linked to an increased risk of developing the disease. Studies have shown that pancreatic cancer patients with BRCA mutations may respond well to treatment with PARP inhibitors, making them a promising option for personalized treatment.

GRAIL Galleri Test

Another exciting development in precision medicine is the GRAIL Galleri test, a blood test that screens for multiple types of cancer by detecting DNA fragments shed by tumors into the bloodstream. This test could potentially detect pancreatic cancer at an earlier stage when treatment is more likely to be successful. While this test is still in clinical trials, it holds great promise for improving early detection and ultimately, survival rates for pancreatic cancer patients. At the Institute for Human Optimization, we offer this Early Multi Cancer Detection test.

Full-Body MRI Scans

Full-body MRI scans becoming more accessible are another technology that could play a role in precision medicine for pancreatic cancer. These scans can detect small tumors and lesions in various organs, providing valuable information about the spread of the disease and potential treatment options. While there have been concerns on “incidentalomas” or finding unrelated findings on these scans, radiology imaging has advanced to distinguish between cancerous and non-cancerous tissues with high accuracy.

The Future of Pancreatic Cancer Treatment

Precision medicine is still in its early stages, but it holds immense promise for improving the diagnosis and treatment of pancreatic cancer. By taking into account an individual’s unique genetic makeup and tumor profile, precision medicine allows doctors to provide more targeted and effective treatments that may improve outcomes for patients. As technology continues to advance, we can hope for more innovative approaches and breakthroughs in the fight against this devastating disease. With precision medicine at the forefront, there is renewed hope for a future where pancreatic cancer is no longer a death sentence. So let’s continue to support research and advancements in precision medicine, because every life matters.

References

  1. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10046065/
  2. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8682800/

_

In recent years, there has been a great deal of interest in GLP-1 medications and its potential to provide therapeutic benefit. GLP-1 for years had been used exclusively for the treatment of type 2 diabetes but has now been found to have multiple beneficial effects on glucose metabolism and has been FDA approved to treat obesity. GLP-1 works by binding to GLP-1 receptors, which are located in a variety of tissues throughout the body including pancreas, brain and fat cells. However, is GLP-1 all that it is made out to be? In this blog post we will discuss what makes GLP-1 so special by delving into its features and effects on our bodies; taking into consideration both the good and bad side of things when discussing each aspect about GLP-1.

. . .

WHAT IS GLP-1?

GLP-1 stands for Glucagon Like Peptide-1 and it is a hormone released from the intestines in response to food intake. GLP-1 is an incretin hormone and its primary role is to stimulate the release of insulin from the pancreas. GLP-1 also increases glucose uptake in the muscle cells, inhibits glucagon secretion from the pancreas and decreases appetite and food intake. GLP-1 acts on specific receptors present in multiple tissues throughout the body, including pancreatic beta cells, brain areas involved in reward processing, and fat cells.

GLP-1 AND DIABETES

GLP-1 is used in diabetes treatment to stimulate the release of insulin from the pancreas and decrease glucagon secretion. GLP-1 agonists (synthetic GLP-1 molecules) are used in combination with other therapies to improve glycemic control and reduce risk of hypoglycemia. GLP-1 agonists are approved for use as injectable medications and GLP-1 receptor antagonists are approved for use as oral medications. GLP-1 agonists have been shown to reduce HbA1c levels, improve glycemic control and reduce risk of hypoglycemia in individuals with type 2 diabetes.

GLP-1 AND OBESITY

In addition to its effects on glucose metabolism, GLP-1 has been found to have beneficial effects on obesity. GLP-1 agonists reduce food intake by decreasing the reward associated with eating. GLP-1 receptors are present in brain areas involved in reward processing, so GLP-1 agonists can decrease the motivation and drive to eat by disrupting these reward pathways. GLP-1 agonists also increase energy expenditure and reduce fat storage in the body. GLP-1 agonists are approved for use as injectable medications to help individuals with obesity achieve weight loss goals.

THE GOOD, THE BAD & THE UGLY OF GLP-1

The “good” of GLP-1 is that GLP-1 agonists have been found to reduce HbA1c levels, improve glycemic control and reduce risk of hypoglycemia in individuals with type 2 diabetes. GLP-1 agonists also have beneficial effects on obesity, reducing food intake and increasing energy expenditure. In a recent study, GLP-1 agonists were found to lead to an average of 7% weight loss in the treatment group versus 2.3 % in the placebo group, with GLP-1 therapy leading to greater reductions in body fat.

The “bad” of GLP-1 is that GLP-1 agonists can be expensive and may not be covered by insurance plans. GLP-1 agonists are injectable medications, so this can be inconvenient for some individuals. GLP-1 receptor antagonists may cause fluid retention and weight gain in some individuals.

The “ugly” of GLP-1 is that GLP-1 agonists can cause gastrointestinal side effects, including nausea and vomiting. GLP-1 receptor antagonists have also been linked to lean mass loss and increased risk of fractures. In a recent study, GLP-1 receptor antagonist therapy was associated with a significantly higher risk of fracture in women compared to GLP-1 agonist therapy. Additionally, in two semaglutide trials , DEXA scans revealed  a significant decrease in lean muscle mass associated with GLP-1 receptor antagonist therapy.

NOT ALL WEIGHT LOSS IS CREATED EQUAL

GLP-1 agonists have been found to be effective for weight loss, but it is important to understand that not all weight loss is created equal. Losing weight in itself  is not a cure for obesity. GLP-1 agonists are only one piece of the puzzle when it comes to weight loss and should be used in combination with lifestyle changes, such as increased physical activity and improved nutrition, to promote long-term success. GLP-1 agonists reduce food intake and increase energy expenditure, but they do not address underlying issues with emotional eating or lifestyle factors such as diet and lack of physical activity.

Body Composition vs Body Weight

When trying to reach weight loss goals, it is important to measure body composition (lean mass and fat mass) rather than just focusing on body weight. GLP-1 agonists have been linked to lean mass loss, so monitoring body composition can help ensure that individuals are losing fat and not muscle. Muscle is important because it helps burn calories and maintain a healthy metabolism, so preserving lean mass is important for long-term weight loss success. Fat loss while increasing muscle mass is the ultimate goal! Before starting these medications, it’s recommended to have a form of body compositional analysis to assess your baseline, such as a DEXA scan.

BODY COMPOSITION AND LONGEVITY

Recently on the blog, we discussed how strength training is a critical piece of the puzzle for optimal longevity.  GLP-1 agonists can be helpful for weight loss, but it is important to understand that GLP-1 agonists cannot replace strength training for optimal longevity. Our body composition and muscle strength are important for maintaining our quality of life and independence as we age, so it is important to focus on building muscle mass and not just the number on the scale.

TOO MUCH OF A GOOD THING

While GLP-1 can be an excellent way to improve glycemic control and reduce risk of hypoglycemia, GLP-1 agonists should not be taken indefinitely. GLP-1 agonists can have serious side effects in some individuals and long-term use of GLP-1 agonists is associated with an increased risk of fractures. Thus, GLP-1 agonists should be used responsibly under the supervision of a healthcare provider after weighing out risks and benefits.

Are you on a health journey? If so, you know that it can be both challenging and rewarding. There are many things to consider as you work to improve your health, including cultivating resilience. Resiliency is important for everyone, but it’s especially crucial when you’re trying to make changes in your life. Here are some tips for building resilience while on a health journey.

WHAT IS RESILIENCY?

Resiliency is the ability to adapt and cope in the face of adversity. It’s an important skill to have because it helps you to keep going even when things are tough. Resilience is what allows you to bounce back from setbacks and continue working towards your goals.

Mental strength is a key component of resilience. If you can learn to manage your thoughts and emotions, you’ll be better equipped to handle difficult situations. This doesn’t mean that you won’t feel pain or setbacks, but it does mean that you’ll be able to cope with them in a healthy way.

HEALTH JOURNEY

When patients come to us, we always tell them that adopting a healthy lifestyle is a journey, not a sprint. This means that there will be ups and downs along the way. It can be easy to be discouraged when you have a setback, but it’s important to remember that this is all part of the process.

Since we offer Functional Medicine services, the majority of patients come to us with complaints such as fatigue, digestive issues, hormonal imbalances, and mood swings. They’ve often been to multiple doctors and tried many different things, but nothing has worked. As a result, they can be feeling frustrated, hopeless, and even a little bit angry.

It’s important to remember that these feelings are normal. It’s also normal to feel like giving up at times. It can be easy to give up when you feel like you’ve tried everything, but it’s important to remember that there is always hope. However, it’s important to keep going. If you can cultivate resilience, you’ll be more likely to stick with your health journey and see the results that you’re looking for.

TIPS FOR CULTIVATING RESILIENCY

  1. ADAPT A POSITIVE ATTITUDE

One of the best ways to cultivate resilience is to adopt a positive attitude. This doesn’t mean that you have to be happy all the time or that you should ignore your problems. It simply means that you should try to focus on the good things in your life and look for the silver lining in every situation. When you have a positive outlook,  you’re more likely to see the possibilities instead of the obstacles.

2. BE MINDFUL OF YOUR THOUGHTS

Your thoughts play a big role in how you feel and how you react to difficult situations. If you find yourself thinking negative thoughts, try to reframe them in a more positive light. For example, instead of thinking “I can’t do this,” try thinking “I can do this.”

It’s also important to be mindful of the language that you use. For instance, instead of saying “I have to go to the gym,” try saying “I get to go to give my body daily movement.” This small change in language can make a big difference in how you feel.

3. LEVERAGE CHALLENGES AS OPPORTUNITIES

When you’re on a health journey, it’s important to see challenges as opportunities. This means that instead of feeling discouraged when you have a setback,  you should use it as a chance to learn and grow. Maybe you didn’t stick to your diet as well as you wanted to this week. That’s okay! Use it as an opportunity to reflect on what went well and what you could improve next week.

4. SET REALISTIC GOALS

One of the best ways to set yourself up for success is to set realistic goals. This means that your goals should be specific, measurable, attainable, relevant, and time-bound. At our practice, we create plans of action that help patients set and achieve their health goals. 

5. CREATE A SUPPORT SYSTEM

You don’t have to go through your health journey alone. In fact, it’s often helpful to create a support system of friends, family, or even healthcare professionals. When you have people to lean on, you’ll be more likely to stay on track with your health journey.

Cultivating resilience is an important part of being successful on a health journey. By adopting a positive attitude, being mindful of your thoughts, and setting realistic goals, you’ll be more likely to stick with your healthy lifestyle and see the results that you’re looking for.

Did you know that your brain is protected by a special barrier? This barrier, called the blood brain barrier (BBB), acts as a shield to keep harmful toxins and bacteria from entering your brain. The BBB is made up of a network of cells that line the inside of your blood vessels. These cells act like a filter, preventing anything from passing through except for nutrients and essential elements needed by your brain. But what happens when the BBB is damaged? Can it be repaired? Read on to find out!

WHAT IS THE BLOOD BRAIN BARRIER?

Our brains are special organs. Not only do they control all the activities of our body, but they’re also enclosed in a protective skull. This protection is necessary because the brain is extremely sensitive to damage. One of the ways it’s protected is by something called the blood brain barrier (BBB). The blood brain barrier is a special barrier that separates your brain from the rest of your body. The blood brain barrier is formed by a network of cells that line the inside of your blood vessels. It is made up as a single-layered lattice of cells that are closely joined to one another. These cells, known as endothelial cells, act like a filter, preventing anything from passing through except for nutrients and essential elements such as oxygen and glucose to pass through to your brain. Anything else, including harmful toxins and bacteria, is blocked from entering. This barrier acts as a shield to protect your brain from harmful toxins and bacteria. The BBB is also maintained by a layer of astrocytes, which are star-shaped cells that support and protect your brain cells.

DAMAGE IN THE BBB

While the BBB does a great job of protecting your brain, it can also be damaged. When the BBB is damaged, harmful toxins and bacteria can enter your brain and cause damage. One way this can happen is by injuries such as a skull fracture. A skull fracture is a break in your skull bone. When this happens, it can damage the cells that make up the BBB. Another way the BBB can be damaged is by diseases such as stroke, meningitis, and encephalitis. In a stroke, for example, blood flow to part of your brain is interrupted, which can damage the BBB. These diseases can damage the endothelial cells that make up the barrier, leading to the passage of harmful toxins and bacteria into your brain. The BBB can also be damaged by things you eat and drink. For example, research shows how alcohol and certain drugs can damage the cells of the barrier. This can allow harmful toxins and bacteria to enter your brain and cause damage.

VAGUS NERVE & BLOOD BRAIN BARRIER

Recently on the IFHO blog, we discussed the importance of the vagus nerve.  The vagus nerve is a special nerve that connects your brain and your gut. It controls many functions in the body, including digestion and the immune system. Studies have shown that the vagus nerve can also play a role in maintaining the integrity of the blood brain barrier. When the vagus nerve is stimulated, it sends signals to the endothelial cells that line the blood vessels in the brain. These signals help to keep the cells tightly joined together, preventing harmful toxins and bacteria from entering. This suggests that the vagus nerve may be a way to protect your brain from damage caused by diseases and injuries.

LEAKY BRAIN

A leaky brain is an inflammed brain. Inflammation refers to the body’s response to injury or infection. When the BBB is damaged, it can trigger inflammation in your brain. Not all inflammation is bad. The body’s inflammatory response is important for healing and repairing tissues. When our body is injured, inflammation is the first line of defense. It’s what helps us to heal. However, when inflammation becomes chronic, it can be harmful. Chronic inflammation is when the body’s inflammatory response doesn’t go away and continues long after the injury or infection has healed. This can lead to a number of health problems. Leaky brain is a condition in which the blood-brain barrier is damaged, leading to the passage of harmful toxins and bacteria into your brain. When chronic inflammation occurs in the brain, it can lead to a wide variety of problems. What causes leaky brain?  There are many things that can cause chronic inflammation in the brain and lead to a leaky brain. Some of the most common causes are:

  • Traumatic brain injury
  • Infections, such as meningitis, encephalitis, and Lyme disease
  • Stroke
  • Alcoholism
  • Drug abuse
  • Nutritional deficiencies
  • Gut Dysbiosis (infections)
  • Leaky Gut
  • Autoimmune Disease
  • Mental Health Conditions
  • Stress & Vagus Nerve Dysfunction

STUDIES ON THE BBB

One area of research on the BBB is with NFL players. NFL players are at risk for head injuries, which can damage the BBB. Concussions are incredibly common in professional football. There was a study that looked at the brains of former NFL players from a brain donation program after they died. The study found Chronic Traumatic Encephalopathy (CTE) was found in 110 of 111 brains of deceased former NFL players[i]. The damage was most often found in the areas of the brain that are responsible for memory and thinking. The study also found that the damage to the BBB was linked to the players’ level of cognitive impairment.

Another study was done on retired NFL players who had a history of concussion. The study found that these players had a higher level of harmful toxins in their brain than people who didn’t have a history of concussion. The study also found that the players with a history of concussion had a higher level of protein associated with brain damage[ii]. This suggests that head injuries can damage the BBB and lead to the entry of harmful toxins into your brain.

Another area of research on the BBB is how it can be repaired. Some studies have shown that when the BBB is damaged, it can be repaired. For example, a study showed that when the BBB was damaged by a stroke, the barrier could be repaired by giving the patient erythropoietin (EPO), which is a hormone that helps your body make red blood cells. This suggests that there may be ways to repair the BBB if it is damaged.

HOW THE BBB AFFECTS THE WHOLE BODY

Our brains play a vital role in keeping our bodies healthy. The brain controls all of the functions of the body, including breathing, heart rate, and digestion. When the BBB is damaged, it can allow harmful toxins and bacteria to enter the body and cause damage. This is because the barrier not only protects the brain, but it also protects the rest of the  body. This affects our entire bodies , not just our brains.

FUNCTIONAL APPROACH TO THE BLOOD BRAIN BARRIER

Functional medicine is an approach to medicine that looks at the body as a whole. It takes into account all of the factors that can affect your health, such as your lifestyle, environment, and genetics. Functional medicine physicians often use a systems biology approach to treatment, which means they look at how all of the systems of the body work together.

At IfHO, we do that and more as partner with you to become your health intelligence partner with the goal of optimizing your health. We accomplish this with our signature precision medicine approach. We are a Maryland Functional Medicine but our providers use a combination of therapies that are tailored to your specific needs with a health optimization goal. We believe that our Medical Team should make use of the latest scientific research to offer our patients personalized medicine, based on real data. We call this precision health and it is the future of healthcare.

Our focus is not only looking at the root cause, but also to measure, quantify and optimize the patient’s personal health. We take a preventative approach, personalized, and precise approach in helping our patients control their risk factors early on in order to avoid chronic illness down the road. Our team of medical providers use a comprehensive approach with every patient that comes into our office, looking at all aspects of health including lifestyle, environment and genetics. There is no generic one size fit all protocols. No two patients receive the same treatment plan since we work with each individual to create a personalized plan. We empower our patients with the right tools and information, so they can take control of their own health. This is the future of longevity!


[i] https://jamanetwork.com/journals/jama/fullarticle/2645104

[ii] https://www.nejm.org/doi/10.1056/NEJMoa1900757

The vagus nerve, also known as the gut-brain axis, is the longest nerve in your body. This nerve starts in your brainstem and extends down to your abdomen. It plays a role in many of your body’s functions, including digestion, heart rate, and immune response. The vagus nerve is also involved in some mental health conditions, such as anxiety and depression. The vagus nerve is also a key player in your body’s nervous system, and it can be a major factor in your overall health. In this blog post, we’ll take a look at the vagus nerve and its role in your health.

WHAT IS THE VAGUS NERVE?

Vagus stands for wandering in Latin, and that’s an apt description for this nerve. The vagus nerve is a long, thin nerve that starts in your brainstem and extends down your neck and into your chest and abdomen. Nerves in the body are made up of bundles of nerve fibers, or axons, that transmit signals between the brain and the body. The vagus nerve is made up of both motor and sensory axons. Motor axons carry signals from the brain to the body, telling the muscles what to do. Sensory axons carry information from the body back to the brain. The vagus nerve is one of twelve cranial nerves, and it is the longest nerve in your body. This nerve plays a role in many different body functions, including digestion, heart rate, and immune response. The vagus nerve is also involved in some mental health conditions, such as anxiety and depression.

GUT-BRAIN AXIS

The vagus nerve is often called the gut-brain axis because it is involved in both gastrointestinal and mental health conditions. The gut-brain axis refers to the relationship between the brain and the gut, and it’s a key factor in your overall health. You can learn more about the gut-brain axis here: https://dev.ifho.org/gut-brain-axis-the-ultimate-communication-channel/. The vagus nerve is responsible for sending signals between the brain and the gut, and these signals play a role in both digestion and mental health.

The gut-brain axis is a two-way street, and the gut can also send signals to the brain. The gut sends signals to the brain through the vagus nerve, and these signals can affect your mood and mental health. The gut also sends signals to the brain through the autonomic nervous system. The autonomic nervous system is the part of the nervous system that controls the body’s automatic functions, such as heart rate and digestion. The autonomic nervous system is divided into two parts: the sympathetic nervous system and the parasympathetic nervous system. The sympathetic nervous system is responsible for the “fight or flight” response, and it increases heart rate and blood pressure. The parasympathetic nervous system is responsible for the “rest and digest” response, and it decreases heart rate and blood pressure.

The vagus nerve is part of the parasympathetic nervous system, and it plays a role in the “rest and digest” response. When the vagus nerve is stimulated, it can decrease heart rate and blood pressure. The vagus nerve is also involved in the production of acetylcholine, a neurotransmitter that plays a role in memory and learning.

ACETYLCHOLINE

Acetylcholine is a neurotransmitter that plays a role in memory and learning. This neurotransmitter is produced by the vagus nerve, and it plays a role in both mental and physical health. Acetylcholine is involved in learning and memory, and it can also help to protect the brain from damage. This neurotransmitter is also involved in muscle contraction, and it can help to improve muscle function.

VAGAL TONE

Vagal tone  is the term used to describe the activity of the vagus nerve. Vagal tone is measured by assessing the electrical activity of the vagus nerve. This measure can be used to assess the health of the vagus nerve and its impact on overall health. High vagal tone is associated with better health, and low vagal tone is associated with poorer health.

Vagal tone can be affected by many different factors, including stress, diet, and exercise. Stress can decrease vagal tone, while diet and exercise can increase vagal tone. Diet and exercise can also help to improve the overall health of the vagus nerve.

STIMULATING THE VAGUS NERVE

How can we take care of the vagus nerve?

There are a few things that can help to stimulate the vagus nerve:

  1. Diet: Eating a healthy diet is one of the best things you can do for your overall health, and it’s also good for the vagus nerve. Eating plenty of fruits, vegetables, and whole grains can help to improve vagal tone.
  • Exercise: Exercise is another great way to improve your overall health and vagal tone. Getting regular exercise can help to increase blood flow to the vagus nerve and reduce stress levels.
  • Massage: Massage can also help to stimulate the vagus nerve. Massaging the neck and head can help to increase blood flow to the vagus nerve.
  • Cold therapy: Cold therapy, such as ice baths or cold showers, can also help to stimulate the vagus nerve. The cold temperature can help to increase blood flow and reduce inflammation.
  • Stimulating activities: There are also some activities that can help to stimulate the vagus nerve. Activities such as singing, chanting, or even gargling can help to activate the nerve.
  • Deep Breathing:   Deep breathing helps to increase blood flow to the vagus nerve and reduce stress levels.

By following these tips, you can help to take care of your vagus nerve and improve your overall health.

WEARABLE DEVICES

Biometric devices, also known as wearable devices, refer to the measurement of biological features. This term is often used to describe the measurement of physical features, such as fingerprints or facial features. Biometrics can also be used to measure physiological features, such as heart rate or blood pressure. We see them commonly used in wearable smart watches, which track our fitness and sleep. Many wearables now track HRV  (heart rate variability), which some experts believe is a good marker of vagal tone. HRV refers to  the variation in the time between each heart beat. Low HRV is associated with high stress and poor health, while high HRV is associated with good health. You can learn more about HRV in our blog post here: https://dev.ifho.org/blog-heart-rate-variability/.

While non-medical wearable devices should not be used to diagnose, track, or treat any health condition, they can be a helpful way to gain insight of your daily activities and key metrics that may influence your overall health.

Institute for Human Optimization

In conventional medicine,  the vagus nerve is often overlooked. However, in functional medicine, the vagus nerve is considered to be an important part of overall health. The vagus nerve is involved in many different functions, and it can have a significant impact on overall health. Functional medicine practitioners believe that the vagus nerve can be a key player in many different health conditions. The vagus nerve is involved in the gut-brain connection, and it can impact gut health. The vagus nerve is also involved in the stress response, and it can impact the immune system.

At IfHO, we do that and more as partner with you to become your health intelligence partner with the goal of optimizing your health. We accomplish this with our signature precision medicine approach. We are a Maryland Functional Medicine but our providers use a combination of therapies that are tailored to your specific needs with a health optimization goal. We believe that our Medical Team should make use of the latest scientific research to offer our patients personalized medicine, based on real data. We call this precision health and it is the future of healthcare.

Our focus is not only looking at the root cause, but also to measure, quantify and optimize the patient’s personal health. We take a preventative approach, personalized, and precise approach in helping our patients control their risk factors early on in order to avoid chronic illness down the road. Our team of medical providers use a comprehensive approach with every patient that comes into our office, looking at all aspects of health including lifestyle, environment and genetics. There is no generic one size fit all protocols. No two patients receive the same treatment plan since we work with each individual to create a personalized plan. We empower our patients with the right tools and information, so they can take control of their own health. This is the future of longevity!

Water is essential for our bodies to function properly. Every cell, tissue, and organ in our body needs water to work correctly. In fact, our bodies are made up  of about 60% water. It’s no secret that drinking plenty of water is important for good health, but what are some of the specific benefits of doing so? Here we’ll take a look at some of the top health benefits of staying hydrated. From keeping our organs functioning properly to helping us maintain a healthy weight, this weeks blog will go over all the health rewards that come with drinking water and staying hydrated.

THE ROLE OF WATER

Water is made up of two hydrogen atoms and one oxygen atom, and it’s this simple chemical structure that gives water some of its amazing properties. For example, water is:

  • A Good Solvent: This means it can dissolve many different types of molecules, making it ideal for transporting nutrients and waste products around the body. It does so by dissolving them into smaller particles that can easily pass through the body’s cells.
  • A Polar Molecule: This means that it has a slightly negative charge at one end (the oxygen atom) and a slightly positive charge at the other (the hydrogen atoms). This gives water molecules a strong attraction to each other, which is why water is such a good solvent.
  • A High Specific Heat Capacity: This means that it takes a lot of energy to heat up water. This is why our bodies sweat when we’re hot – the evaporation of sweat from our skin helps to cool us down.
  • A Great Heat Regulator: Water can absorb and release large amounts of heat, which helps to keep our bodies at a stable temperature.
  • A Major Component of Bodily Fluids: Blood, sweat, urine, and tears are all mostly water.
  • Helps Lubricate and Cushion Joints:  Water is a key component of the fluids that lubricate and cushion our joints.

LOW GRADE DEHYDRATION

Most people are chronically dehydrated and don’t even know it. Mild dehydration can cause fatigue, anxiety, headaches, and difficulty concentrating. In fact, even just a 1-2% drop in hydration levels can negatively affect your mood and energy levels. Low grade dehydration affects  nearly 75% of Americans and is a major contributing factor to the rising rates of fatigue and poor concentration. Improper hydration affects the cells internal environment  and the way they function. How?  When the body is not properly hydrated, it pulls water from other areas in order to maintain proper function in the brain and other vital organs. This causes those other areas to become dehydrated, which can lead to all sorts of problems such as  dry skin, constipation, and joint pain.

How much water should you drink?

The amount of water you need to drink depends on a number of factors, including your age, activity level, and health. The 8×8 rule (drinking eight 8-ounce glasses of water per day) is a good general guideline, but may not be appropriate for everyone.

For example, people who are physically active or live in hot climates may need more water than the 8×8 rule recommend. On the other hand, people who are elderly or have health conditions that cause them to retain water may need less than the 8×8 rule suggests.

STAYING HYDRATED

Staying hydrated at a cellular level does take much more than water.  In order to properly hydrate the cells, a combination of water, electrolytes, and minerals are needed. Electrolytes  such as sodium, potassium, and magnesium help to regulate the body’s fluid levels and are essential for proper cell function. Minerals such as calcium and phosphorus are needed for strong bones and teeth. Proper cell function means  that the cells can properly do their job,  which is to remove waste products and toxins from the body, deliver nutrients to where they are needed, and produce energy.

To stay properly hydrated, I recommend trying to incorporate water dense fruits and vegetables. In doing so, you can increase your water intake while also getting the added benefits of vitamins, minerals, and antioxidants. Adding a pinch of high quality sea salt  to your water can also help to replenish electrolytes.

BENEFITS OF STAYING HYDRATED

Proper hydration is essential for our optimal health and wellness. Benefits of  staying hydrated include:

  • Improved Mood and Energy Levels:   When the body is properly hydrated, the brain functions more efficiently and mood and energy levels are improved.
  • Better Cognitive Function:  Dehydration can lead to poor focus, difficulty concentrating, and decreased cognitive function.
  • Increased Physical Performance:  Dehydration can cause fatigue, muscle cramps, and decreased coordination. Staying properly hydrated can help to prevent these effects and improve physical performance.
  • Improved Kidney Function:  The kidneys rely on water to filter waste products from the blood. When the body is properly hydrated, the kidneys are able to function more efficiently.
  • Reduced Risk of Chronic Diseases:  Proper hydration is essential for the proper function of all systems in the body. Dehydration can lead to chronic problems such as high blood pressure, type 2 diabetes, and kidney stones.
  • Improved Skin Health:  Dehydration can cause the skin to become dry, wrinkled, and dull. Proper hydration helps to keep the skin looking plump and youthful.
  • Improved Joint Health:   Dehydration can cause the joints to become dry and inflamed. Proper hydration helps to keep the joints lubricated and reduces inflammation.
  • Improved Digestion:   Dehydration can cause constipation and other digestive problems. Proper hydration helps to keep the digestive system moving smoothly.

6 TIPS FOR OPTIMAL HYDRATION

  1. Drink water first thing in the morning: Drinking water first thing in the morning helps to rehydrate your body after a long night of sleep. The first thing  you put into your body sets the tone for the rest of the day, so make sure to start your day off with a tall glass of water.
  2.  Invest in a good cup:  Investing in a good quality water bottle or cup can help to make drinking water more enjoyable. If you have a cup that you really like, you’re more likely to drink from it throughout the day.
  3. Use an App to track your water intake:   There are lots of great apps out there that can help you to track your water intake. By tracking your water intake, you can ensure that you’re drinking enough throughout the day. Some apps have features like reminders to  drink water, which can be really helpful.
  4. Substitute Soda or Juices with Sparkling Water:   If you’re looking for a way to add some flavor to your water without all the sugar, try adding some sparkling water. You can find sparkling water in a variety of flavors,  or you can even make your own by adding fruit slices or mint leaves to plain carbonated water. I personally enjoy adding fresh oranges or limes to my sparkling water.
  5. Install a good filter:   Installing a good water filter can help to ensure that you’re drinking clean, pure water. This is especially important if you live in an area with poor water quality. A good water filter will remove impurities from your water,  making it taste better and be better for your health.
  6. Water Rich Foods:   Including water rich foods in your diet is a great way to stay hydrated. Some water rich foods include fruits and vegetables like watermelon, cucumber, tomatoes, and strawberries. Including these foods in your diet will help you to reach your daily water intake goals.

Drinking plenty of water is essential for our health and well-being. By staying properly hydrated, we can improve our mood, energy levels, cognitive function, physical performance, kidney function, skin health, joint health.  Leave a comment below  and let us know how you stay hydrated throughout the day.

Institute for Human Optimization

We are seeing more a paradigm shift in healthcare.  At IfHO, we partner with you to become your health intelligence partner with the goal of optimizing your health. We accomplish this with our signature precision medicine approach. We are a Maryland Functional Medicine but our providers use a combination of therapies that are tailored to your specific needs with a health optimization goal. We believe that our Medical Team should make use of the latest scientific research to offer our patients personalized medicine, based on real data. We call this precision health and it is the future of healthcare.

Our focus is not only looking at the root cause, but also to measure, quantify and optimize the patient’s personal health. We take a preventative approach, personalized, and precise approach in helping our patients control their risk factors early on in order to avoid chronic illness down the road. Our team of medical providers use a comprehensive approach with every patient that comes into our office, looking at all aspects of health including lifestyle, environment and genetics. There is no generic one size fit all protocols. No two patients receive the same treatment plan since we work with each individual to create a personalized plan. We empower our patients with the right tools and information, so they can take control of their own health. This is the future of longevity!

Did you know that your body has its own internal clock? This “circadian rhythm” is responsible for regulating many different bodily functions, and can play a big role in your overall health. The start of Daylight-Saving Time this month is a good reminder to talk about circadian rhythm—the internal clock that governs our sleep-wake cycles. Most of us are familiar with the yearly ritual of setting our clocks ahead one hour, but do you know what circadian rhythm is and why it’s important? Understanding your own circadian rhythm and how to work with it can be an important part of maintaining good health. In this blog post, we’ll discuss what circadian rhythm is, how it works, and some ways that you can optimize your own rhythm to improve your health. Stay tuned!

Circadian rhythm is a natural, physiological process that regulates many different bodily functions.  It is controlled by a part of the brain called the suprachiasmatic nucleus (SCN), which responds to light and dark signals. These signals help to synchronize our body’s clocks with the 24-hour day-night cycle.

The circadian rhythm has a huge impact on our health. It can affect everything from our energy levels to our sleep quality. How rhythmic or not your circadian rhythm is can have wide-ranging effects on your health, including but not limited to the following:

Heart Health

Key functions of cardiovascular health work on a circadian rhythm[i]. When there is a disruption to our circadian rhythm, it can increase our risk for a whole host of cardiovascular problems. Heart attack, stroke, high blood pressure and irregular heartbeat have all been linked to circadian rhythm disruption. A 2019 research study found a higher risk of heart attack after both time changes, but particularly during daylight saving. It is believed that the sudden shift in light and dark can confuse the SCN and cause it to send mixed signals to the heart.

Metabolism

The body’s metabolic rate is also tied to its circadian rhythm. When the rhythm is disrupted, it can lead to weight gain, insulin resistance and other metabolic problems. People who have a more regular circadian rhythm are more likely to have a healthy weight, while those with disrupted rhythms are more prone to obesity and metabolic disorders. Metabolic homeostasis, the body’s ability to maintain a healthy weight, is regulated by the circadian rhythm.[ii]

Sleep

The quality of our sleep is also closely tied to our circadian rhythm[iii]. The more regular and in sync our rhythm is, the better our sleep tends to be. People with disrupted circadian rhythms often suffer from insomnia, restless leg syndrome and other sleep problems. Poor sleep at the systems level can lead to a number of health problems, including obesity, diabetes and heart disease. There are specific disorders with known links to the central clock. These are known as circadian rhythm sleep disorders (CRSDs) and include:

Delayed Sleep Phase Disorder (DSPS):  People with this disorder have a hard time falling asleep and waking up at conventional times. They tend to go to bed late and wake up later than most people.

Advanced Sleep Phase Disorder (ASPD): People with this disorder fall asleep early and wake up very early, often before sunrise.

Irregular Sleep-Wake Syndrome (ISWS):  People with this disorder have no real pattern to their sleep and wake times.

Jet Lag:  This is a temporary disruption of the circadian rhythm that can occur when traveling across time zones.

Shift Work Disorder:  People who work at night or rotate shifts often have trouble adjusting their circadian rhythm to the new schedule.

Irregular Sleep-Wake Syndrome (ISWS):   People with this disorder have no real pattern to their sleep and wake times.

Cancer

While the link between circadian rhythm and cancer is still being studied, there is some evidence that circadian rhythm disruption can increase the risk of cance[iv]r. One study showed that women who worked night shifts had a higher risk of breast cancer.[v] Another study found that people who slept fewer than six hours per night were more likely to develop colon cancer.[vi] More research is needed to determine the precise link between circadian rhythm and cancer, but the preliminary evidence is suggestive.

Blood-Sugar Regulation

The circadian rhythm also regulates blood sugar levels[vii]. When the rhythm is disrupted, it can lead to insulin resistance and type 2 diabetes. Studies have shown that people with regular circadian rhythms are less likely to develop type 2 diabetes, while those with disrupted rhythms are more prone to the disease.

Asthma

Asthma is the result inflammation in the airways, which makes it difficult for you breathe.  In terms of circadian rhythm, asthma follows a “diurnal pattern” which refers to the regular daily fluctuations in symptoms. Asthma typically worsens during the day and is better at night. Research has shown that the disease path of asthma is closely linked to the circadian rhythm of certain inflammatory pathways.[viii]

Hormone Regulation

The circadian rhythm also regulates many hormones, including cortisol and melatonin. When the rhythm is disrupted, it can lead to hormone imbalance and a number of health problems. For example, people with disrupted circadian rhythms often have difficulty regulating their stress levels, which can lead to anxiety and depression. Melatonin is a hormone that helps regulate sleep-wake cycles. When the rhythm is disrupted, it can lead to problems with sleep and insomnia.

OPTIMIZING YOUR CIRCADIAN RHYTHM

There are many ways to optimize your circadian rhythm and improve your health. Some tips include:

Daytime Light Exposure

Getting plenty of natural sunlight during the day is essential for keeping your circadian rhythm in check. Sunlight helps to synchronize the SCN and keep it aligned with the external environment. Make sure to get outside for at least a few minutes each day, even if it’s just to take a quick walk.

Blocking Light at Night

If you’re unable to get outside during the day, try to avoid exposure to artificial light at night. Blue light, in particular, can disrupt your circadian rhythm. Make sure to use blackout curtains or eye shades especially if you need to sleep in a room that has artificial light.

Staying on a Regular Schedule

Keeping a regular sleep schedule is one of the most important things you can do to optimize your circadian rhythm. Try to go to bed and wake up at the same time each day, even on weekends.

Eating a Healthy Diet

A healthy diet is also essential for keeping your circadian rhythm in check. Eat plenty of fruits and vegetables and make sure to get enough protein and healthy fats. Avoid eating processed foods and sugary snacks, which can disrupt your rhythm.

Exercising Regularly

There is an old saying that couldn’t be truer: “A tired dog is a good dog.”  Exercise is crucial for keeping your circadian rhythm in balance. Make sure to get at least 30 minutes of exercise each day, and try to do it at the same time each day whenever possible.

Managing Stress

Finally, managing stress is essential for keeping your circadian rhythm in check. When you’re stressed out, it can throw off your rhythm and lead to a host of health problems. Make sure to practice relaxation techniques such as yoga, meditation, and deep breathing exercises on a regular basis.

Caffeine Intake

Caffeine is a stimulant that can also disrupt your circadian rhythm. Try to avoid drinking caffeinated beverages late in the day, and try not to drink them at all if you’re struggling to get to bed.

CONCLUSION

The circadian rhythm is one of the most important patterns in your life and it has a significant impact on your health.  By understanding how this pattern works, you can make small changes to improve your well-being. We hope that this week’s blog post has helped increase your knowledge about circadian rhythms and their importance. Be sure to follow us next week for another informative blog post!


[i] https://pubmed.ncbi.nlm.nih.gov/21641838/

[ii] https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3781773/

[iii] https://www.nigms.nih.gov/education/fact-sheets/Pages/circadian-rhythms.aspx

[iv] https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7120250/

[v] https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7013618/

[vi] https://sleepeducation.org/short-sleep-adds-colon-cancer-risk/#:~:text=A%20new%20study%20shows%20sleeping,a%20precursor%20to%20cancer%20tumors.

[vii] https://med.stanford.edu/news/all-news/2009/10/bodys-circadian-rhythm-tightly-entwined-with-blood-sugar-control.html#:~:text=But%20what%20sets%20that%20circadian,mechanism%20for%20regulating%20blood%20sugar.

[viii] https://hms.harvard.edu/news/circadian-rhythm-asthma

Your immune system is designed to distinguish between what belongs in your body (e.g., I like you, myself) and what doesn’t (e.g., I don’t like you, not myself). For this purpose, it uses specialized cells to carry information around the body about which substances are friends or foe. It does this by tagging these molecules with pieces of protein called antigens. These pieces of information are carried on specialized cells – white blood cells – and displayed to other white blood cells by the process of antigen presentation. Immune cells use this information about which things in your body, good or bad, belong and which don’t as a guide to perform different tasks such as killing invaders. Autoimmune conditions are conditions where the body’s immune system attacks its own tissues (and sometimes organs). Autoimmune conditions are increasing at an alarming rate yet diagnosing them can be tough. This week’s article will discuss the 5 basic components of autoimmune conditions.

Autoimmunity encompasses a diverse range of conditions that occur when something goes wrong with our immune system.  In fact, the immune system is meant to be a smart one. It receives information from our microbiome and has different cells that perform unique tasks – T-helper cells, cytotoxic T-cells, B-cells, etc. – all of which have a very particular purpose in their job description. This makes it tough for autoimmune conditions to sneak by undetected. Autoimmunity arises when something goes wrong in one of these components. When the immune system malfunctions, it starts to attack its own cells, tissues and organs. It can also lead to inflammation which is often autoimmune conditions are associated with excess amounts of systemic inflammation. Such conditions are referred to as autoinflammatory or autoinflammatory disorders.

Autoimmune conditions generally require 5 components: genetics, environmental factors, loss of gut-barrier function, an unruly immune system, and an imbalanced microbiome.

1. Genetics Our genetic code is made up of 46 chromosomes, including 22 pairs of autosomes (a chromosome that is not a sex chromosome) and one pair of sex chromosomes (X/Y). The sex chromosomes determine whether we develop male or female traits. Each cell in our body has the same DNA; however, different types of cells express different genes. For instance, liver cells only express the genes that play a role in liver function. The genetic code contains both “sensor” and “effector” information. Sensor information is expressed as recognition molecules called receptors and effectors are the responses generated by certain mechanisms when they bind to their receptors. Some of these receptor and effector mechanisms are enzymes and ion channels. Most cells in the body do not express receptors that recognize antigens (proteins that induce an immune response). However, some cells such as B-cells and T-cells — which play a key role in adaptive immunity — express receptors on their surface called immunoglobulins (antibodies). When an antigen binds to the B-cell receptor, the B-cell becomes activated and changes its gene expression to produce plasma cells. These plasma cells secrete antibodies that bind to the antigen. Then, other immune system cells aid in clearing the antigen out of circulation. The presence of these proteins on their cell surfaces is the first step in the immune response, which then triggers an adaptive response.

It has been suggested that genetics play a role in the development of autoimmune diseases, including lupus and rheumatoid arthritis. The risk of developing an autoimmune disease is increased if you have family members with one or more autoimmune diseases. Many genes are believed to be involved in autoimmune disease, and it is believed that certain genes make people more susceptible to developing an autoimmune disease. For example, celiac disease an autoimmune condition that affects the small intestine is thought to be strongly influenced by genetics. A person with celiac disease is at increased risk of having family members with celiac disease, especially if they are related through blood (inherited). While your genes play an important role, they do not have to be your health destiny.  You can make changes in your lifestyle that affect your genes. 

2. Environmental Triggers: Environmental triggers are stimuli that exist in their environment which cause them to become ill. Environmental triggers are generally defined as non-infectious agents or conditions, although some infections can also be included within this definition. Examples of environmental triggers include chemicals, allergens, medications, ultraviolet radiation, thermal conditions, pollution, etc. Some environmental factors are known to possibly trigger or worsen autoimmune conditions, including celiac disease and Hashimoto’s thyroiditis.[i] For example, gluten consumption has been identified as a possible triggering factor for autoimmune diseases, especially celiac disease. Some data even suggests that there is a higher prevalence of autoimmune conditions among those living in geographic regions where gluten consumption is more common. This means that people who live in areas with a high percentage of people who eat foods containing gluten (such as wheat or other grain products) may have an increased risk of developing an autoimmune condition, including celiac disease.

3.Loss of Gut-Barrier Function[ii]: Our gut-barrier function is a complex process that prevents unwanted substances from reaching our blood, lymphatic system and other areas of the body. Our body doesn’t want us to get sick, so there are mechanisms in place that work together to create this barrier. It has been suggested that the gut-barrier may be breached or damaged by environmental triggers, food ingredients or medications. This allows substances from the lumen of the intestine to enter our internal environment and trigger an autoimmune response. It is believed that the innate immune response in autoimmune conditions is created when our gut-barrier function is compromised and foreign antigens (antigens are fragments of proteins that induce an immune reaction) enter into systemic circulation. Inflammatory bowel disease (IBD) is a condition where there is a breakdown in gut-barrier function which results in an uncontrolled inflammatory response. The breakdown of the gut barrier may be due to genetic factors, environmental triggers or loss of mucosal integrity. Loss of gut-barrier function is common in autoimmune conditions, especially celiac disease and psoriasis.

4. An Unruly Immune System: The immune system has two main divisions that are responsible for protecting us from foreign invaders:   innate immunity and adaptive immunity. Innate immunity is our first line of defense against foreign invaders.[iii] It is non-specific and protects us by using physical, chemical and cellular barriers. The innate immune system reacts immediately to stop infection. This response takes place in all individuals, regardless of what organism or antigen has caused the stimulation. Innate Immunity usually stops an invasion within minutes to hours. Examples of this include fever, inflammation and the production of mucus. The second line of defense is our more specific adaptive immunity. In contrast to innate immunity, it takes days to weeks to fully activate. It works by creating a memory of the foreign invader and being able to recognize it if it were encountered again in the future. Adaptive Immunity, also known as T-cell mediated immunity, creates specific responses to antigens (the specific substance that causes the immune system to respond). Antigens can be proteins, such as those found on bacteria or viruses. They may also be tumor-associated proteins and transplant tissue antigens.

5. Imbalanced Microbiome: The human microbiome is a complex, vast and dynamic ecosystem of microbial and human cells that live in and on our bodies. We have an estimated 2-4 pounds of microbes living inside us, which is about the weight of a bowling ball. These microbes are made up of approximately 1000 different species from more than 39 major phyla. Our microbiota (the bacteria, viruses and fungi that live in or on our body) contains at least 160 times more bacterial cells than human cells. These microbial communities vary greatly and can be affected by many factors such as diet, genetics and environmental exposures. Bacteria within the microbiome produce enzymes and other chemicals which help to maintain health. The majority of these organisms exist in the gastrointestinal tract, where they synthesize vitamins, process carbohydrates and fats and degrade toxins and drugs. When our microbiome is imbalanced, this is called dysbiosis. Dysbiosis is when there is an abnormal composition of the microorganisms that comprise our microbiome. The microbiome can be disrupted by changes in diet, use of antibiotics and aging, among other things. It’s been estimated that over 50% of people with autoimmune conditions have alterations in their gut flora when compared to healthy individuals. Although researchers are still determining what a healthy microbiome looks like, it has been shown that the gut microbiota in patients with autoimmune disease is different from those who typically lack inflammation.

Institute for Human Optimization

We are seeing more a paradigm shift in healthcare.  At IfHO, we partner with you to become your health intelligence partner with the goal of optimizing your health. We accomplish this with our signature precision medicine approach. This may include functional, traditional, and/or naturopathic medicine. Our providers use a combination of therapies that are tailored to your specific needs with a health optimization goal. We believe that our Medical Team should make use of the latest scientific research to offer our patients personalized medicine, based on real data. We call this precision health and it is the future of healthcare.

Our focus is not only looking at the root cause, but also to measure, quantify and optimize the patient’s personal health. We take a preventative approach, personalized, and precise approach in helping our patients control their risk factors early on in order to avoid chronic illness down the road. Our team of medical providers use a comprehensive approach with every patient that comes into our office, looking at all aspects of health including lifestyle, environment and genetics. There is no generic one size fit all protocols. No two patients receive the same treatment plan since we work with each individual to create a personalized plan. We empower our patients with the right tools and information, so they can take control of their own health. This is the future of longevity!


[i] https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5706077/

[ii] https://pubmed.ncbi.nlm.nih.gov/22109896/

[iii] https://pubmed.ncbi.nlm.nih.gov/17904335/

Maryland Functional Medicine

Maryland Functional Doctor

Maryland Functional Physician

F